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Executive Summary 

Non-recurring traffic congestion, in the form of traffic incidents, accounts for over 50% of day-

to-day traffic delays. We are also seeing an increasing frequency of other major traffic 

disruptions, both anticipated (e.g., hurricanes) and no-notice (e.g., man-made disasters). 

Changes in traffic patterns under such conditions render existing control strategies, which are 

typically optimized to handle "typical" traffic conditions, obsolete. In fact, these control strategies 

can even contribute to worsening traffic conditions. 

As new sources of traffic and related data are becoming more widely available and at a 

granularity that was inconceivable only a decade ago, our ability to measure traffic conditions 

and detect incidents has dramatically improved. Responding to such conditions in real-time via 

control strategies that are tailored to the nature of the incident is a natural next step in the 

process. But performing optimal control calculations in real-time and in a way that captures (i) 

uncertainties in the evolution of traffic conditions and (ii) queue build-up and dissipation 

dynamics in a network setting cannot be achieved with present state-of-the-art algorithms. 

This report presents real-time distributed network control techniques capable of utilizing various 

types of real-time traffic data, from both fixed and mobile sources. The work is divided into two 

major parts: traffic state estimation when data is limited and adaptive control. The first part 

develops techniques that produce data needed for the control techniques developed in the 

second part of this report.  Stochastic model of traffic flow for modeling uncertainty in traffic 

conditions are first developed and then state estimation techniques that aim at imputing traffic 

data spatially are developed and tested.  Project background and literature reviews are given in 

Section 1, which is followed by a description of the network model developed for testing 

purposes in Section 2. 

Two methodologies for traffic state estimation are presented in Section 3: (i) A conditional 

random fields (CRF) approach that combines mesoscopic traffic modeling with the statistical 

power of probabilistic graphical models to learn the traffic patterns from historical data, including 

both look-ahead dynamics along with vehicle interaction dynamics, and (ii) a stochastic 

Lagrangian model utilizing the Newell-Franklin equilibrium relation along with a second-order 

Gaussian approximation are developed.  The latter allows for fast estimation techniques to be 

used (namely, standard Kalman filters).  For the CRF approach, we use a factor graph 

representation of the mesoscopic dynamics, which is a graphical tool that helps simplify the 

estimation process. Coverage of the probe vehicle information can be expected to be highly 

random as well as sparse in the real-world. The experiments demonstrate that the distribution 
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of probes in a sample can severely impact the estimation results, and hence it is not sufficient to 

specify adequate penetration levels with a single value.  

 

A new Backpressure (BP) algorithm tailored to traffic dynamics (namely, capturing queue build-

up and dissipation) is developed in Section 4.  The proposed approach overcomes drawbacks in 

the original theory from a traffic dynamics point of view, specifically, infinite arc capacities, point 

queues, independence of commodities (turning movements), and there being no analogue for 

start-up lost times in communications networks (where BP was originally developed). These are 

critical features in intersection control. The backpressure control technique developed in this 

report is based on macroscopic traffic flow and is referred to as position-weighted backpressure 

(PWBP).  

Fourthly, we use real world data to test the effects of traffic state estimation and network control 

in Section 5.1. The NGSIM trajectory data along I-80 in the San Francisco Bay area in Emeryville, 

CA is used. The traffic state in terms of density dynamics can be well estimated with 10% 

penetration rate. The investigation of the speed estimation error in terms of RMSEs for different 

penetration rates illustrate that there is strong improvement as the penetration rates increase 

from 5% to 15%. Additionally, a microscopic traffic simulation model of an eleven-intersection 

network in Abu Dhabi is used to test the proposed PWBP control policy in Section 5.2. 

Comparisons against coordinated and optimized fixed signal timing, standard BP, and a capacity-

aware variant of BP (CABP) were carried out. The results indicate that PWBP can accommodate 

higher demand levels than the other three control policies and outperforms them in terms of 

total network delay, congestion propagation speed, recoverability from heavy congestion, and 

response to an incident. 
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1 Introduction 

1.1 Background and Literature Review 

Automated vehicle (AV) technologies are beginning to penetrate vehicle fleets in cities 

throughout the world. It is reasonable to expect that vehicle trajectory data from AVs (e.g., 

through on-board GPS units) will become a prominent source of high-resolution traffic data. 

AVs may act as probes in the traffic stream, continuously broadcasting their position and speed 

in real-time. More importantly, AVs can also provide distance headways (spacing between 

successive vehicles) using infrared or radio technology (1, 2). However, privacy issues and 

technology limitations can limit the ability of traffic management agencies to collect, analyze, 

and disseminate such information. To overcome this, these data can be fused with data 

obtained from traditional monitoring devices such as inductive-loop detectors (stationary 

sensors). As these two data sources complement each other, comprehensive datasets can be 

obtained for traffic monitoring and state estimation (3). However, the improvement in accuracy 

with data fusion over single sensor applications depends on probe penetration rates and on 

traffic conditions. In urban road networks, where stationary sensor instrumentation is usually 

limited and traffic lights play a governing role in the traffic dynamics, a higher number of probes 

may be necessary to accurately characterize traffic conditions. 

 

A number of modeling techniques have been proposed in recent years to estimate traffic 

densities (4, 5, 6, 7), speeds (8) and travel times (9, 10).  Studies have also been carried out to extract 

patterns from streaming data using data mining techniques (11, 12, 13, 14). To account for the 

variability in urban traffic, statistical approaches using Coupled Hidden Markov Models were 

also applied to estimate the traffic state from sparse probe data (15). Hybrid modeling tools that 

combine machine learning with hydrodynamic traffic theory have also been applied to predict 

arterial travel times from streaming GPS probe data, (16) and data-driven modeling to capture 

longitudinal interactions between vehicles has also been investigated (17). 

  

Research on traffic state estimation from probe data for urban networks has focused on the 

reconstruction of traffic states at an aggregate level (over an entire intersection-to-intersection 

road segment) (18). At a finer scale, traffic densities on a freeway section are reconstructed by 

modifying traditional continuum models with a correction term to nudge the model estimate 

towards the GPS probe measurements (4). The maximum sampling interval (time between two 

consecutive probe vehicle samples) required to accurately detect incidents and the optimal 
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placement of sensors for reliable time-to-detection of incidents have also been studied (19, 20). 

Comparisons of travel time estimates produced using one source of data versus fused data 

from two data sources (stationary sensors and probe vehicle data) were performed by Mazaré 

et al. (21) and a number of studies have reported probe penetration rates required for traffic 

state estimation on arterials (22, 23, 24, 25). While the reliability of probe vehicle data has been 

investigated and compared against stationary sensor data (26, 27), variability in the spatio-

temporal coverage of probe vehicles has not been adequately studied, particularly at the fine 

level required for effective traffic management. 

 

Motivated by the wide spatio-temporal coverage offered by fused traffic data, the question of 

adequate levels of probe penetration is addressed at a microscopic scale in this research. The 

focus of the random fields estimation part of this research is on the reconstruction of vehicle 

trajectories over a single roadway, where a stationary sensor captures the arrival times of the 

vehicles and the speeds of the probe vehicles is used to infer the traffic state over the entire 

link.  A probabilistic approach is proposed for the spatio-temporal reconstruction of dynamic 

traffic state from sparse probe data, wherein the traffic patterns are learned from historical 

data using Conditional Random Fields (CRFs). By modeling the vehicle interaction potential to 

reflect local traffic information (such as spacings between vehicles), our estimation models 

seamlessly combine traditional car-following theory and simulation with statistical learning 

techniques to reconstruct microscopic traffic dynamics. 

 

1.2 Traffic estimation with Lagrangian measurements 

Another class of traffic estimation techniques build on the Lighthill, Whitham, and Richards 

traffic flow model (28, 29) (the LWR model).  These approaches are formulated using traditional 

spatial-temporal (Eulerian) coordinates and are most suitable for state estimation with point 

sensor measurements (macroscopic data, e.g., traffic volume, speeds). Data from probe 

vehicles or connected vehicles (microscopic data, e.g., vehicle trajectories) are becoming 

increasingly available. Traffic flow models that are able to effectively utilize such data are of 

greater interest in modern applications. A simple way of interfacing between the microscopic 

and the macroscopic worlds is via coordinate transformations. Indeed, this was done by 

Daganzo (30, 31) and later extended by Leclercq et al. (32) . The former proposes a variational 

formulation of the LWR model in Eulerian coordinates, while the latter formulate the model in 

Lagrangian coordinates.  More recently, Hamilton-Jacobi based formulations of traffic flow have 
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appeared in the literature, (33, 34) and some researchers applied the theory to formulate first-

order models in three different coordinate systems (35), namely the traditional Eulerian 

coordinates and two variants of Lagrangian coordinates. Proposed solutions schemes for the 

deterministic Lagrangian models include both variational techniques and the Godunov scheme 

using a triangular fundamental diagram. Specifically, the Godunov scheme in Lagrangian 

coordinates simplifies to an upwind scheme, enabling more efficient application of data 

assimilation methods (1, 35, 36). 

 

Though deterministic traffic flow models and their solution methods have been extensively 

studied in the literature, stochastic models of traffic flow are still in a burgeoning stage of 

development and are primarily extensions of existing deterministic models. For example, 

stochastic extensions of the cell transmission model (37, 38) have been proposed (5,39); other 

approaches have extended the link transmission model (40), both at the individual link level and 

the network level (41, 42, 43, 44). In general, there still remain issues related to the physical 

accuracy of the sample paths of existing stochastic traffic models, particularly those developed 

for purposes of traffic state estimation (see references (45,46) for recent reviews). The main 

culprit is the dominance of time-stochasticity (or noise) in the stochastic models, mostly 

developed in Eulerian coordinates (6, 8, 39, 47, 48, 49, 50, 51, 52, 53, 54, 55), but also in Lagrangian 

coordinates(1, 56, 57). This results in sample paths prone to aggressive oscillation in the time 

dimension. The interpretation of these oscillations is (unreasonably) aggressive acceleration 

and deceleration dynamics. 

 

This report addresses the physical relevance issue of stochastic traffic dynamics via a new 

stochastic Lagrangian model of traffic flow. The source of uncertainty is parametric in the same 

sense proposed by Jabari et al. (58). The interpretation of this form of uncertainty is 

heterogeneity in the driving population. A stochastic version of Newell-Franklin speed spacing 

relation (59, 60) is utilized. Unlike Newell’s simplified relation (61), a unique inverse function exists, 

which can be used in data assimilation applications. Using parametric uncertainty, the sample 

paths of the stochastic process are smooth and do not contain the oscillatory behavior above.  

The Lagrangian estimation technique in this research focuses on application of the proposed 

model (using parametric uncertainty) for traffic state estimation (TSE), which is a precursor to a 

variety of traffic management applications, specifically control applications.  TSE is particularly 

crucial when data availability is limited.  Non-linearity of traffic models renders the TSE 

particularly challenging.  In theory, one utilizes sampling techniques (e.g., ensemble filters, 
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particle filter, etc.). These approaches are time consuming and cannot be applied in real-time. 

To address this issue, the mean and covariance dynamics are derived in a way that preserves 

the dependencies (i.e., richness) in the model, while allowing for use of standard Kalman 

filtering techniques. The latter are known to be computationally tractable and amenable to 

real-time applications. 

 

1.3 Position-weighted backpressure control 

Various approaches have been proposed to optimize signal timing for isolated intersections, 

including mixed-integer linear models, rolling horizon approaches, and store-and-forward 

models based on model predictive control (62, 63, 64, 65, 66, 67). On the one hand, isolated 

intersection approaches fail to account for spillback from adjacent road segments, which can 

eventually lead to gridlock throughout a road network (68). On the other hand, centralized 

techniques that include coordination between intersection controllers (69, 70) are not scalable 

and difficult to implement in real-world/real-time settings (71). For example, ACS-Lite (70) can 

handle no more than 12 intersections in real-time. 

 

Decentralized control techniques have been proposed to overcome the scalability issues 

associated with network control optimization. These techniques expect intersection controllers 

to be able to measure/estimate local traffic information in real-time. This information includes 

expected traffic demand at the intersection in the next cycle for heuristic approaches (72, 73, 74, 

75), or the queue sizes along the intersection arcs in max pressure based approaches (76, 77, 78, 79). 

According to De Gier et al. (80), control strategies that use traffic conditions along both upstream 

and downstream arcs are more efficient and reliable than those that utilize upstream traffic 

conditions only. Recently, backpressure (BP) control techniques have been adopted to signal 

control; they were first independently proposed by Wongpiromsarn et al. and Varaiya (76, 77) 

based on seminal work in communications networks (81, 82, 83, 84).  In general, BP based 

approaches are scalable and come with theoretical guarantees of network stability. However, 

as it was originally developed for packet queueing in communications networks, the 

assumptions are not tailored to traffic problems and in some cases the assumptions are not 

suitable for traffic networks. Specifically, these models assume point queues and (more 

critically) infinite queue size capacity. As a result, the models do not account for the spatial 

distribution of the queues and (more importantly) cannot account for spillback. Another 

drawback is loss of work conservation, in which no flow is allowed (all red) despite the 
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availability of capacity in the outbound arcs. For example, Figure 1-1 shows three cases in which 

BP control favors the eastbound approach (𝑄𝑎  to 𝑄𝑏), even though no vehicles could actually 

pass the intersection from this approach. Recognizing this problem, some researchers proposed 

an improvement, referred to as capacity aware back pressure (CABP) control (85). Their 

approach can avoid the case illustrated in Figure 1-1a, but not the two depicted in Figure 1-1b 

and Figure 1-1c (in the former, the queue is concentrated at the ingress of the arc). This is due 

to the fact that their approach models traffic as a point queue. 

 
(a) 

 
(b) 

 

(c) 

Figure 1-1 Three non-work conserving cases (adopted (85) and reproduced) 

Another feature of the dynamics of communications networks that does not apply to (road) 

traffic networks is separate queues for different commodities (corresponding to vehicles with 

different turning desires in traffic) and no interference between commodities. Shared lanes, 

which are very common, are one example where this assumption is violated in traffic networks. 

Even when there are no shared lanes, road widening near the egress’s intersection inbound 
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arcs, also very common geometrical features in urban networks, can create bottlenecks at the 

lane-branching point. Different turning movements (commodities) interact at the bottleneck, 

and one queue may block another if it gets too long, as illustrated in Figure 1-2. In (road) traffic 

networks, one has to consider start-up and clearance lost times (i.e. the green lost time) and 

avoid frequent phase switching. These features do not exist in communications networks and 

existing BP control approach applied to traffic flow has not considered such green lost time. 

 

The traffic control part of this research proposes decentralized intersection control techniques 

that build upon macroscopic traffic theory and overcome the issues described above. This 

approach is referred to as position-weighted backpressure (PWBP). PWBP considers the spatial 

distribution of vehicles along the road, applying higher weights to queues that extend to the 

ingress of the road, thereby accounting for the possibility of spillback.  Flow rates entering the 

intersection depend on both the control and the traffic density, thereby capturing diminished 

flows at phase startups (startup lost times).  

 

Figure 1-2 Bottleneck at the lane-branching point. 

The type of control proposed can be applied to intersection signal control, i.e., today’s traffic 

lights. But it can also be thought of as a prioritization scheme for connected vehicles at network 

intersections that can guarantee network stability. In both cases, when accurate measurement 

of the distribution of vehicles along the roads is not possible, one may employ a light-weight 

traffic state estimation technique, such as the Lagrangian TSE method presented in the sequel. 
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2 Network simulation and SCOOT emulator 

2.1 Test network 

The test network considered for simulation is an eleven-intersection network in Abu Dhabi, 

UAE, covering a 2 sq.km area. A google map view of the network – depicting its general 

topology – is shown in Figure 2-1. The network forms a part of Abu Dhabi downtown and is 

surrounded by a mix of residential and commercial establishments.  As such, distinct peaking of 

traffic volumes along the major streets of the network can be observed during morning and 

evening times. 

 

Figure 2-1 Layout of test network. Located in downtown Abu Dhabi, UAE. 

(www.maps.google.com) 

The network has two major arterials (Fatima Bint Mubarak Street and Sheikh Zayed Bin Street) 

that run parallel to each other and is interconnected by four other major streets to form a 

regular grid shaped network. These arterials form the skeleton of the network. The major 

arterials are 3 to 4 lanes wide, with an exclusive left turn and right turn lane (of average length 

of 50m) at each incoming link near the intersection stop line. Major streets in the network, 

their names, and other general details on the streets are listed in Table 2-1. The minor streets in 

the network give access to residential and business offices from the major arterials. These 

minor streets are 1 or 2 lanes wide. There are at least two entries and exits from these major 
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arterials. The network has 11 major signalized intersections (details are given in Table 2-2 and 

Table 2-3). The traffic lights are operated by an adaptive controller (SCOOT (86) – an adaptive 

traffic signal controller, developed in the UK). 

No. Arterial/Street Name Length 
Number of 

lanes 

1 Fatima Bint Mubarak St. 1.85 km 3 lanes 

2 Sheikh Zayed Bin Sultan St. 1.75 km 4 lanes 

3 Hamdan Bin Mohammed 

St. 

1.10 km 3 lanes 

4 Zayed The First St. 1.06 km 3 lanes 

5 9th Street 0.96 km 3 lanes 

6 Al Falah Street 0.60 km 4 lanes 

7 19th Street 0.33 km 3 lanes 

8 10th Street (vertical) 0.67 km 3 lanes 

Table 2-1 Major arterial geometric details 

No. 
Intersection 

Name 

Streets forming the intersection 

In North-South direction In West-East direction 

1 IP 17 Fatima Bint Mubarak street  
Hamdan Bin Mohammad 

street 

2 IP 10 Fatima Bint Mubarak street  Zayed The First street 

3 IP 11C Fatima Bint Mubarak street 9th Street 

4 IP 35 Fatima Bint Mubarak street Al Falah street 

5 IP 11B 10th street 9th street 

6 IP 36B 10th street Al Falah street 

7 IP 9 Sheikh Zayed Bin Sultan street 
Hamdan Bin Mohammad 

street 

8 IP 11 Sheikh Zayed Bin Sultan street Zayed The First street 
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9 IP 11A Sheikh Zayed Bin Sultan street 9th street 

10 IP 36A Sheikh Zayed Bin Sultan street 19th street 

11 IP 36 Sheikh Zayed Bin Sultan street Al Falah street 

Table 2-2 Major signalized intersections in the network 

The testbed selected for microscopic traffic simulation is shown in Figure 2-2.  As seen, only 

that part of the network marked with blue lines – representing major arterials, entries and exits 

points, and signalized intersection – is considered for simulation.  Entrances and exits to minor 

streets in the network serve as sources and sinks in the network, but traffic along the minor 

streets is not part of the simulation model. 

Sl. 

No. 

Intersection 

ID 

Number of Lanes 

(LT/UT – ST) 

Storage Lane Length - for 

LT/UT (m) 
Detector Location (m) 

1st  2nd  3rd  4th  1st  2nd 3rd 4th 1st 2nd 3rd 4th 

1 IP 17 1-3 1-3 1-3 1-3 77 70 80 75 134 182 196 217 

2 IP 10 1-3 1-3 1-3 1-3 80 80 75 80 187 200 200 146 

3 IP 11C - 1-3 2-0 1-3 - 65 - 65 - 150 180 135 

4 IP 35 2-4 1-3 2-4 1-3 75 75 65 75 158 157 169 158 

5 IP 11B 1-3 2-0 1-3 - 75 - 85 - 166 99 175 - 

6 IP 36B 1-4 - 1-4 2-0 130 - 85 - 150 150 150 - 

7 IP 9 2-3 2-4 2-3 1-3 75 75 75 75 156 180 170 147 

8 IP 11 1-3 2-4 1-3 2-4 120 80 80 80 165 200 122 222 

9 IP 11A 1-3 2-4 1-3 2-4 85 80 80 80 170 200 160 180 

10 IP 36A - 1-4 3-0 2-4 - 85 75 85 - 175 150 247 

11 IP 36 2-3 2-4 2-3 2-4 105 75 75 75 190 133 114 170 

Table 2-3 Geometric details of the intersections 

There is a total of 227 sources and sinks in the network – corresponding to an origin-destination 

matrix of dimension 110 x 117 – and it captures all traffic demand in the network. 
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Figure 2-2 Simulation testbed of the calibrated network – showing only the major arterials, 

signalized intersections, and entries and exits, that will be simulated. 

2.2 SCOOT emulator 

The intersections in the network are controlled using the Split Cycle Offset Optimization 

Technique (SCOOT) adaptive controller.  It optimizes cycle length, green splits, and offsets for a 

set of intersections, taking into account the prevailing traffic conditions in the network. This set 

of intersections, often related geographically, is referred to as a Region in the SCOOT literature; 

each region is controlled by a central controller.   

 

Historical high resolution traffic data obtained from Abu Dhabi DOT (87) were utilized to develop 

a SCOOT emulator.  The data utilized to train the emulator included data from the loop 

detectors (inputs to SCOOT) and signal status (output from SCOOT). The detector states were 

obtained at every quarter second and signal states were obtained at every one second. Signal 

states correspond to the status of each protected phase in the intersection.  The emulator is 

essentially an Artificial Neural Network (ANN) (88,89).  This study used a Recurrent Neural 

Network (RNN) (90), which is widely used when the data has a sequential nature. In our case, the 

inputs are assumed to be a sequence of detector states at each previous time step, and the 

output is the signal states in the next time step.  Also, we used a long short-term memory 

(LSTM) (91) instead of vanilla RNN to learn long term dependencies from the previous hidden 
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states. The structure of the recurrent neural network for the Scoot emulator is shown in Figure 

2-3. 

 

Figure 2-3 RNN architecture used for developing the emulator 

The overall problem is structured as a classification problem: Given the detector states in the 

past t seconds, the neural network will predict the signal states, classed as either RED or 

GREEN, in the (t+1)th second.  We divide the whole network into two regions and a separate 

neural network is built for each region. The first region contains the four intersections along the 

Fatima Bint Mubarak Street and the second region contains the remaining seven intersections. 

This partitioning captures the cycle length and signal coordination characteristics among the set 

of intersections operated by different controllers. The rationale for choosing a one-second 

prediction is that the neural network should also be able to learn the gap out characteristics 

based on real time vehicle actuations, from the data.  The input-output characteristics, network 

architecture and learning parameters for the models of the two regions are detailed in Table 

2-4. The models are trained using one day’s data. The training of the neural network is done 

using Python (92) using the Tensorflow package (93) from Google. The python code is attached 

with the report (Scoot_emulator_rnn_training.py). 
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 Region 1 Region 2 

Input-Output characteristics 

a) Number of intersections 4 7 

b) Intersection IDs 17, 10, 11C, 35 11B, 36B, 9, 11, 11A, 36A, 36 

c) Number of detectors 29 48 

d) Number of signal heads 59 107 

Network architecture 

e) Number of input nodes 29 48 

f) Number of output nodes 59 107 

g) Number of hidden layers 1 1 

h) Number of hidden nodes in each 
layer 

64 90 

Learning parameters 

i) Learning rate 0.001 0.001 

j) Loss function Cross entropy Cross entropy 

k) Batch size 1000 1000 

l) Number of iterations 400 400 

m) Regularization (if any) No No 

Table 2-4 Input/output characteristics, network architecture and learning parameters of the 

neural network 

The neural network model for the two regions is trained using one day’s data, which contains 

over 80,000 observations. The performance results during training are shown in Figure 2-4. The 

trained models are then tested using data from three days: a typical work day, a typical holiday, 

and a day with special event (Eid-ul-fitr). This allows us to understand how well the trained 

model generalizes to varying traffic conditions and to data that was not used to train the 

model.  The accuracy, defined as the number of correctly classified signal states, of the trained 

models on the test data is tabulated in Table 2-5. Figure 2-5 and Figure 2-6 show sample 

snapshots of the signal timings predicted using the neural net and the signal timings as 

observed in the field. We observe that (1) the emulator captures the phase sequences very 

well.  (2) It captures the phase durations and phase lagging and leading phenomena.  (3) It 

captures the signal timings though there are some breaks observed in the predicted signal 
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timings.  Overall, the trained model replicates field observed data very well thus serves a 

reasonable tool for simulating SCOOT.   

 

Figure 2-4 Performance of neural network during training for Region 1. (a) Cost function (b) 

Train and test accuracy 

 Region 1 model Region 2 model 

Train data – 1 day 94.0 % 93.0 % 

Test data – Typical working day. 92.5 % 90.9 % 

Test data – Typical holiday. 92.0 % 88.1 % 

Test data – A day with special event. 91.4 % 87.5 % 

Table 2-5 Accuracy results 

 

Figure 2-5 A snapshot of actual vs. predicted signal timings (Intersection IP17; Region 1) 
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Figure 2-6 A snapshot of actual vs. predicted signal timings (Intersection IP9; Region 2) 

2.3 Simulation of test network in microsimulation 

VISSIM microscopic traffic simulator (94), from PTV Vision, is adopted to perform the simulation 

experiments.  This study utilized a variety of 

sources of data to build and calibrate the 

network.  The links, lane configurations, 

intersection layouts, etc., as described in 2.1 

are used to code the network geometry; a 

snapshot is shown in Figure 2-7.  The 

detectors, required for the working of 

SCOOT emulator, are positioned in 

accordance with what is found in the field.  

The control emulator is then implemented 

using VISSIM’s COM interface (95). The code 

for implementing the Scoot emulator in 

Vissim is attached with the document 

(Scoot_emulator_vissim_interface.py).  Also, 

for comparison purposes, optimized fixed 

signal timing plans were developed using Synchro (96) (for different demand scenarios).  

  

 

Figure 2-7 Test network 
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To check the performance of the emulator, we gradually increased the input traffic volume 

(Figure 2-8 Traffic demand) in the network (Region 1) and measured the signal timing and the 

cycle lengths predicted by the emulator. Figure 2-9 shows the signal cycle length observed at 

one of the intersections (IP 17) in Region 1.  The trend line – with a positive slope – shows a 

commensurate increase in signal cycle length with traffic volume, signifying the emulator’s 

ability to adapt to changing traffic demand.  

 

Figure 2-8 Traffic demands 

 

Figure 2-9 Cycle length observed using the emulator for intersection IP 17 
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3 Traffic state estimation 

3.1 Learning Traffic Flow Dynamics using Random Fields 

3.1.1 Stochastic Traffic Dynamics Model 

Look-Ahead Dynamics 

A discrete (state and time) mesoscopic stochastic model is used to represent the traffic 

dynamics. Vehicle movement in the model is governed by potential functions that describe the 

(“energy profile” of) local traffic conditions. Similar (but simpler) models have been employed 

to study interesting traffic phenomena like synchronized traffic at ramps and stop-and-go 

regimes (97).  

The physical roadway is modeled as a one-dimensional uniform lattice L. The spatial co-

ordinates of each vehicle α on the roadway is discretized in such a way that each cell can be 

occupied by at most one vehicle, which is achieved by setting the cell length to an appropriate 

value, e.g. 7.5 m (98). The state of each occupied cell at a discrete time k is completely specified 

by a discretized speed denoted vk∈{0, . . . , vmax}, where vmax is the maximum number of cells 

that can be traversed by a vehicle in one time step. Clearly, vmax depends on the length of the 

discrete time step, δk. Thus, an order parameter σk(l) {−1, 0, . . . , vmax} can be defined for each 

cell lL at time k to represent the traffic state in the cell, where 0 represents a free cell. 

A look-ahead potential is used to capture the response of vehicle a to traffic conditions ahead. 

Specifically, the state of vehicle α at time-step k + 1 is a function of their current speed kv and 

the current speed of their leader 1

kv − . Denote the traffic state pertaining to vehicle α at time 

step k by the vector T

1[  ]k k kY v v  −= . More generally, a vehicle’s look-ahead potential can 

depend on multiple vehicles ahead. Let M denote the look-ahead distance (in number of 

vehicles), then T

1[   ... ]k k k k

MY v v v   − −= . The look-ahead potential is given, for vehicle α and each 

i{0, . . . , vmax} by 

T 1( )k k

ii W Y  −= ,                                                                               (1) 

where | |

i

YW R  is a weight vector that captures the relative importance of each of the state 

variables in Yα
k when assessing the energy of vehicle a if it were to assume speed i {0, . . . , 

vmax}. The parameters can, hence, be encoded into a matrix )| | ( +1maxY v
W


R as W ≡ [W0 . . . Wvmax 

].  
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Vehicle Interactions and Coordination 

The modeling approach above is, in essence, a totally asymmetric simple exclusion process 

(TASEP). Such processes are known to have limitations in some contexts, namely, 

heterogeneous environments with AVs (99). This is a result of vehicles reacting to the traffic 

conditions downstream. Introducing an interaction potential overcomes these limitations and 

offers enhanced interpretability to the probabilities of vehicles advancing to downstream cells 

(100). Consider two interacting vehicles, α and β and let 
,

kY   denote the traffic state pertaining 

the interaction between α and β. The interaction between α and β depends on distance 

between them and their speed difference: T

, ,[  ]k k kY g v      , where ,

k k kg s s   = −  and 

,

k k kv v v    = − . For i, j ∈{0, . . . , vmax}, define the interaction potential as  

T

, , ,( , )k k

i ji j Y     ,                                                                           (2) 

where 2

,i j R , is a vector of two parameters which represent the relative importance of each 

element in ,

kY   and , ( , )k i j   can be interpreted as the potential energy associated with 

vehicle α assuming speed i and vehicle β assuming speed j given their present state at time k. 

The steps involved in simulating the traffic dynamics are summarized in Table 3-1 below, which 

without loss of generality assumes a free downstream boundary. This can be easily modified to 

accommodate downstream restrictions in a way that is similar to the upstream state update 

(see details on boundary treatments (101)). 

    Input: 

    No. lattice sites := N, No. time steps := K , time step := δk, max speed := vmax, Look-ahead distance := M, 

look-ahead matrix := W, interaction tensor := Θ, Arrival density := p1, probability of Slow-down := p2 

    Initialize: 

    Initial traffic state := σ0(l) 

    Iterate: 

    For k = 1 : K do 

        For each α, set 1 1 1 1 1 1 T

-1 - 1: [   ...   ... ]k k k k k k

M MY v v v g g     

− − − − − −

− +=    

    For each β ≠ α, set T

, , ,: [  ]k k kY g v     =     

    For {0,..., }maxi v  do   

        Calculate the look-ahead potential T 1( ) :k ki W Y  −=  

        For {0,..., }maxj v  do 

            Calculate the interaction potential T

, , ,( , ) :k k

i ji j Y    =  
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        End For 

    End For 

    For each α do 

            Total potential 
,0 , :

( ) : ( 1) ( )+ ( , )
maxvk k k

max j
E i v i i j      

 
= 

= +    

    Probability ( ),0 0 , :
( ) : ( )/ ( )+ ( , )

max maxv vk k k k

i i
i E i i i j       

  
= = 

=     

    Velocity Update 

            Sample 
kv from T[ (1) ... ( )]k k

maxv    

            u1 ~ Uniform(0, 1) 

            If u1 < p2 then 

                1k kv v = −  

            End If 

    Position Update: 

            Compute vehicle positions 
ks  in ascending order of α: 

            If 1

1: min( , 1)k k k ks s v s N   

−

−= + −   then 

                :ks =   

            End If 

    Traffic State Update: 

            ( )k k ks v  =  

    End For 

    Boundary Conditions: 

    u2 ~ Uniform(0, 1) 

    If u2 < p1 and (1) 0k =  then 

        T: [   ]k k

maxy v v s =  (α is the index of upstream-most vehicle in the system) 

        For {0,..., }maxi v , calculate ˆ : exp[ ]k T

i iW y = −  

    and normalize: 
=1

ˆ ˆ: /
maxvk k k

i i ii
   

=   

    T

1(1) ~ [  ... ]
max

k k k

v    

End If 

End For 

Table 3-1 Algorithm for simulation of traffic dynamics 

3.1.2 Probabilistic Inference 

Assume there are |V| vehicles in the system and at each time step k, the state (speed and 

position) of a subset of these vehicles is observed. The estimation problem is concerned with 

determining the state of all vehicles given the partial observations. More accurately, the 

estimation problem seeks to fit the conditional probability distribution of the state given the 
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observations. Let T

1 | |[  ... ]v i i= V=
 and let 0 0

0 1 1 | | | |( ) ( = ,..., = )v v i v i  P V= V=
, prior distribution of speeds 

(state at time 0), be given. Let σk,obs denote the observed traffic states (measurements) 

available at time k. For each time step, the inference problem seeks to determine the 

conditional probability 

0 1 ,

1 | | 1 1 | | | |
ˆ( ,..., ) ( = ,..., = | , )k k k k obsi i v i v i Y − PV= V= V= ,                                       (3) 

where 1ˆ kY −
 is based on the maximum a posteriori (MAP) estimate of the traffic state at time 

step k − 1. 

3.1.3  Factoring and Factor Graph Representation 

Let { | }V V = V= be a discrete valued random field with the probability mass function (pmf), 

1 | |( )= ( ,..., )i i  Vv . The random field V is a Markov random field (MRF) if it satisfies the 

Markovian property 

1 1( = | )= ( = | )V i V V i V
 P P N ,                                                                 (4) 

for all α V=, where Nα denotes the set of “neighbors” of α. These (conditional) independence 

assumptions between the variables Vα can be encoded in a graph ),=( G= V= where V=is indexed 

by the vertices (also called nodes) V= such that =( )s sV V V=
 and edges (or arcs)     V= V. Note 

that the vertices coincide with the vehicles themselves; it is for this reason that the same 

notation is used in both cases. In this study, the edges ε connect the (speeds of) vehicles, rather 

than the lattice cells, as the random variables of the MRF model. By encoding the spatial 

dependencies in the speed field through edges ε, the condition in (4) implies that speed of any 

vehicle is independent of the traffic state given the local speed field. 

The joint probability distribution over all the variables in the Markov model can be compactly 

represented by defining a set of cliques {𝒞}, which are subsets of vertices of 𝒢 such that all 

vertices in each clique 𝒞 are completely connected or mutually adjacent. A clique is said to be 

maximal if no other vertex in 𝒢 can be added without violating the clique property. The joint 

distribution of the MRF can be expressed over the maximal cliques, as a product of factors as 
(102), 

1
( )= c

cZ
 



v
G

,                                                                      (5) 

where Z is the normalizing constant, vc is the restriction of v to the vertices in the clique c, and 

{ }c c G  is a set of “factors” for each maximal clique cG . Each factor is a non-negative 
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function defined over a clique to represent the (unnormalized) probability distribution between 

the nodes in the clique. When the potentials are restricted to be strictly positive, the factors 

can be re-parametrized in the log space and expressed in terms of the Boltzmann distribution 

as ( )c cE

c e −
=

v , where { ( )}c c cE v G  are properly defined potential functions over the cliques. 

Consider the case where probe vehicles are equipped with sensors capable of measuring 

distances and speeds of other vehicles that are immediately adjacent (their immediate leaders 

and followers). In this case, the look-ahead potentials are encoded into node factors, { }k

  V , 

and interaction potentials into edge factors, , ( , ){ }k

     . (When two vehicle indices appear in 

the subscript, the factor is to be implicitly understood as an edge factor.) Figure 3-1 presents a 

factor graph representation of a system with five vehicles, i.e., V= = {1, …, 5} and interaction 

between adjacent vehicles. The vehicle speeds are presented by circular nodes in the graph. 

Factors are represented by square nodes in the graph, where the set { }k

  V  are the factors 

pertaining to look-ahead dynamics, while , ( , ){ }k

      are factors pertaining to vehicle 

interactions 

 

Figure 3-1 Example factor graph 

The algorithm is a generalization of the variable elimination algorithm to execute multiple 

queries on the same tree-structured graph efficiently by guiding the order of operations. This is 

achieved by fixing any node as the root of the graph and determining the order in which the 

messages are propagated from the root to all its leaves by a depth first search algorithm. 

Messages are sent from all the leaf nodes to the root node during a single forward pass shown 

as red arrows in Figure 3-2. The figure also indicates the order in which the nodes are traversed 

when the node V7 is the root node. By then sending messages from the root node to the leaf 

nodes during a single backward pass and storing all the intermediate messages, the marginals 

over any subset of variables can computed without recalculation for every inference. More 

details can be found in standard references on graphical models/machine learning (102, 103). 
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Figure 3-2 Illustration of forward (red arrows) and backward passes (black arrows) in the sum-

product algorithm 

When measurements are available for some of the vehicles, given by σk,obs, the inferences can 

be conditioned by clamping the corresponding variables to the observed states. As a 

consequence of conditional independence, when a node is observed, it breaks the chain 

structure into a forest of independent chains. For example, for the five vehicle system in Figure 

3-1 and Figure 3-2, assuming V3 = 1 is given (i.e., the speed of vehicle 3 is known/measured), 

the independent forest shown in Figure 3-3 is obtained. 

 

Figure 3-3 Decomposition of the factor graph into a forest of independent sub-graphs in the 

presence of measurements 

 

3.1.4 Model Testing and Validation 

Numerical Test: Shockwave 

Consider a road of length N cells with vmax = 3 and assume an arrival density at the upstream 

end of p1 = 0.25. At the upstream boundary, loop detectors provide information about the 

occupancy and speed of all upstream vehicles, as well as the entry times of new vehicles into 

the road. In order to validate the model (with out-of-sample data), an incident is simulated at 

the downstream boundary of the road section. The simulated traffic dynamics are illustrated in 

Figure 3-4(a), which represents ground truth and used for comparison with the traffic dynamics 

reconstructed by the CRF model. The interface between the free-flow (red) part of the figure 

and the congested (green and black) part of the figure represents the propagation of 

congestion from the source of the incident at the top of the figure into the upstream (against 

the direction of traffic). The trajectory of the interface represents a shockwave in the traffic 

stream. A subset of all the simulated vehicles are chosen randomly to represent a set of probe 
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vehicles. For this study, periodic noise-free updates of the vehicle position and speed   

(obtained from successive GPS coordinates) are assumed to be available from the probe 

vehicles at a (time) cadence of once every 1 seconds. Consequently, vmax = 3 cells and cell 

lengths of 7.5 meters correspond to a maximum speed of 81 km/hr. The CRF model is used to 

estimate the speed field sequentially in discrete time-steps, which correspond to the sampling 

interval of the probe vehicles. The estimated vehicle trajectories are shown in Figure 3-4(b), 

indicating that a probe penetration rate of 10% is sufficient to capture the backward 

propagation of a shockwave generated by the incident located downstream. 

 

(a) Ground truth 

 
(b) Probe penetration=10% 

Figure 3-4 Validation of CRF model 

Learning Traffic Dynamics from Historical Data 

In this experiment, “historical datasets” are simulated for a road section using a microscopic 

traffic simulation tool. The simulations are run for 1 hour periods (from 8 am to 9 am) with a 15 

minute warm-up period for an arterial link that is 500m long. The vehicle trajectory data, 

collected from the simulation, is a sequence of spatial co-ordinates sampled every 1 second. 

This continuous trajectory data is discretized by dividing the roadway into a cell lattice (with cell 
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lengths 7.5m). The free-flow speed along the arterial link is 120 km/hr, and a fixed-time signal is 

located at the downstream end with a green time of 90s. In order to generate sufficient 

historical data, datasets are generated for different traffic conditions by varying the random 

seed as well as by considering different traffic flow conditions. The effect of increasing the 

probe penetration rate on the estimated traffic states is shown in Figure 3-5, which indicates 

that a penetration rate of 10% is not adequate for learning the traffic dynamics. The results also 

show that with a single set of historic data to learn from, in order to capture the ground truth 

conditions with sufficient accuracy, a probe penetration of 20% or more is needed. This is 

compared to the case where historical data are used to fit the parameters of the model in 

Figure 3-6. After ten learning phases, it can be observed from Figure 3-6 that even with a 10% 

probe penetration, vehicle trajectories can be reconstructed faithfully (comparable to using 

standard estimation techniques with a 30% probe penetration rate). 

   

(a) Ground truth                                                  (b) Probe penetration = 10% 

   
(c) Probe penetration = 20%                            (d) Probe penetration = 30% 

Figure 3-5 Spatio-temporal velocity map. Black cells correspond to speeds i = 0, green to i = 1, 

yellow to i = 2, and red to i = vmax = 3 
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(a) Without historical data                                     (b) With historical data 

Figure 3-6 The effect of utilizing historic data, i.e., learning, on the estimated traffic dynamics 

Probe Vehicle Distribution 

Accuracy of the estimation problem not only depends on penetration rates of probe vehicles, 

but also on how the probes are distributed in the sample. The estimated traffic states are 

compared for two random distributions of probes, both representing a penetration rate of 5%. 

Figure 3-7 depicts the distribution of the randomly selected probes in the upper half of the 

figure with the estimated trajectories in the lower half for a signalized arterial. In this 

experiment, three signal cycles are simulated with simulation time horizon of length T = 900 

seconds with a red-time of 100 seconds. The cycles start at time steps k = 100, 400, and 700. 

While this information can be easily inferred from a probe level of 5% as shown in Figure 3-7(a), 

when none of the sampled probes pass through the third signal cycle the estimation algorithm 

fails to capture the build-up and dissipation of queues in the time period from 700 to 900 

seconds: as can be seen in Figure 3-7(b). 

 

(a) Probe distribution 1 
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(b) Probe distribution 2 

Figure 3-7 Different probe vehicle distributions 

To study the effect of randomness in probe coverage (the distribution of the probes in the 

sample), a road segment with an on-ramp located at about 300 m downstream is considered. 

The free-flow speed was assumed to be 80 km/hr, while the traffic demand was gradually 

increased in 15 minute intervals from 1200 veh/hr to 2500 veh/hr to capture the build-up and 

dissipation of the on-ramp queues. The speed ranges correspond to the discrete speed states 

(the number of lattice cells crossed by a vehicle in a single time step). 

The traffic state estimated for a time period of T = 15 minutes in congested conditions is 

depicted in Figure 3-8. When compared with the ground truth, the estimate produced with a 

probe penetration of 20% is sufficient to capture the shockwaves created by the on-ramp. 

 

(a) Ground truth 
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(b) Probe penetration = 20% 

Figure 3-8 Time-space diagram (velocity) 

It should be noted here that although no information regarding the entry times of the on-ramp 

vehicles was provided to our estimation algorithm, it can be inferred from the output in Figure 

3-8(b). Similar estimation studies have indicated that probe levels of 2% can capture the 

shockwaves generated by lane-closure on a freeway (104). However, in settings where the 

random arrivals of vehicles (e.g., on-ramp vehicles) significantly impact traffic flow, it is not 

surprising that a higher probe penetration rate is required for traffic state estimation in 

congested conditions. Moreover, as summarized in a study (105) on the microscopic estimation 

of freeway vehicles in a connected environment, for traffic signal control problems a minimum 

penetration rate of 20-30% is required, while for arterial performance measurement the 

penetration rate ranges from 10-50%. 

The spatial distribution of the probe vehicles plays a significant role in the accuracy of 

estimated results, as observed earlier. To analyze the effect of the randomness introduced by 

the probe vehicle distribution, R = 100 simulations are run for each of the vehicle probe 

penetration rates, choosing a probe distribution randomly for each penetration rate. The 

following penetration rates are considered: 5%, 10%, 20%, and 30%. Figure 3-9 depicts the 

frequencies of the MAPEs for each of the penetration rates. The mean value of the MAPE for a 

probe penetration level of 5% is around 18%, but the high variability observed implies that 

travel time error can be even higher if the probe distribution is highly random. As the number 

of probe vehicles increases, this variability in the error decreases. 
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Figure 3-9 PDF of the Mean Absolute Percent Error in travel time at different probe levels 

3.2 Traffic state estimation using stochastic Lagrangian dynamics 

3.2.1 The traffic dynamics 

Heterogeneous model 

We assume a discrete system with N +1 vehicles numbered in descending order of position; 

that is vehicle n = 0 is the leader, n = 1 is the immediate follower, and so on. We assume a finite 

time horizon T < ∞ and that time is continuous (i.e., T∈ +R ). Let xn(t) and vn(t) denote the 

position and speed of vehicle n at time t∈[0, T], respectively. We denote the spacing between 

vehicle n and their leader, n − 1, by 

                            1( ) ( ) ( )n n ns t x t x t− − ,  (6) 

Heterogeneity in the driver population is represented by driver-specific speed-spacing relations. 

Without loss of generality, we adopt the Newell-Franklin (stationary) speed-spacing relation (59, 

60): 

                            ,f

( )

,f ,f( )

n
n

n

c
s d

v

n n nV s v v e

−
−

= − ,  (7) 

where the driver-specific parameters (vn,f , dn, cn) represent driver n’s desired (free-flow) speed, 

minimum safety distance, and the constant cn is the inverse of the reaction time of driver n 

when their speed is restricted by the trajectory of their leader. In addition to the properties 

discussed in (60), this choice is inspired by the unique inverse function (Opposed, for instance, to 

Newell’s simplified relation (61).), which can be used in data assimilation applications. 

Furthermore, the spacing dynamics can be simulated using the following recursion:  

                   ( )-1 -1( ) ( ) ( ( )) ( ( ))n n n n n ns t t s t t V s t V s t+ = +  − ,  (8) 
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In settings with homogeneous drivers, in which (vn,f , dn, cn) = (v0,f , d0, c0) for all n ≥ 1, ∆t is 

chosen so as to ensure no violations of the Courant-Friedrichs-Lewy (CFL) condition, i.e., ∆t ≤ 

∆n/c0 and to mitigating numerical diffusion, one chooses the largest such time discretization: ∆t 

= ∆n / c0. 

An algorithm for simulating sample paths is given as below: 

Require: N, Δn, T, x0(·), v0(·), 
1{ (0)}N

n ns =
, Fθ, 0k   

1: for 1n  to n N  do 

2: U1, U2, U3 ~ Uniform[0,1]3 

3: 
1 2 3

1

,f( , , ) ( ), ,n n nv d c F U U U

−  

4: end for 

5: 
1
min

n N
n

n
t

c 


   

Iterate: 

6: while | / |k T t   do 

7:   +1k k  

8:   for 1n  to n N  do 

9:     ( ) ( ( ))n n nv k t V s k t    

10:     ( )1( ) (( 1) ) (( 1) ) (( 1) )n n n ns k t s k t t v k t v k t−  −  + −  − −   

11:     
1( ) ( ) ( )n n nx k t x k t s k t−   −   

12:   end for 

13: end while 

Table 3-2 Algorithm for simulating a single sample path 

Parametric uncertainty and stochastic dynamics 

To introduce stochasticity, we let the parameters be random variables. We interpret this as 

uncertainty about the driver characteristics. To differentiate the stochastic case from the 

deterministic case, we write the (stochastic) parameters as functions of ω, where Ω  ω is the 

random space. We assume the random triples (the parameters) constitute n independent 

draws from identically distributed joint distributions. That is, we define the parameter 189 

vector θ(ω) ≡ (vf , d, c)(ω) with joint distribution function Fθ and the parameter tuple for each 

driver n, θn = (vn,f, dn, cn), is drawn independently from this common distribution: θn ∼ Fθ. The 

stochastic speed-spacing relation is given by: 

∈ 



 

 Traffic state estimation  29 

                        f

( )
( ( ))

( )

f f( , ) ( ) ( )

c
s d

v
V s v v e




  

−
−

= − ,  (9) 

 

3.2.2 Mean dynamics and variability 

 Mean speed-spacing relation. From the strong law of large numbers, we have that: 

                        
1

1
( , ) ( )

M
m

i

V s V s
M


=

→  almost surely,  (10) 

where ( ) ( , )V s V s  E . Note that f f f( ) exp( ( / )( ))V s v v c v s d − − − , where f f ( )v v  E , 

( )c c = E , and ( )d d  E . The right-hand side is a percentile speed-spacing relation 

(typically, a 0.5-percentile or equilibrium relation), while ( )V s is a mean speed-spacing relation; 

see(58) for more details. An example comparison is shown in Figure 3-10.  

 

Figure 3-10 Mean relation, ( )V  vs. percentile relation. 

Convergence result. The ensemble-average process converges to the mean dynamic is stated as 

follows: 

                        || ( , ) ( ) || 0 for all [0, ]M

t
M

s s t T
→

 −  →  . (11) 

3.2.3 Numerical Testing 

Consider a system with N = 200 vehicles (for example, made available by a fixed sensor in the 

system) and a time horizon of T = 1000 seconds. Assume a uniform spacing of 0.036 km at time 

t = 0, that is s(0) = [0.036 · · · 0.036] . The leaders speed trajectory is given by: 
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0

0 km/hr  if ( ] sec
( )

60 km/hr  otherwise

r r rt jT T jT
v t

 −
= 


，
, (12) 

where Tc = 120 seconds is the cycle length, Tr = 70 seconds is the red time, and j ∈ {1, …, 6}. The 

way we specify the leading vehicles trajectory is to create congestion such as vehicles waiting 

for the red signal at intersections. We assume in this example that vf (ω), d(ω), and c(ω) are 

independent Beta random variables with supports [vf
min, vf

max] = [40, 80] km/hr, [dmin, dmax] = 

[5.88, 9.09] meters, and [cmin, cmax] = [1100, 5100] veh/hr. We test the impact of increasing 

vehicle trajectory measurements on the uncertainty of traffic states in the system using 

algorithm in Table 3-3. Figure 3-11 depicts a sample path of the stochastic dynamics in terms of 

vehicle position trajectories and spacings. 
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Require: N, Δn, T, x0(·), v0(·), z(0), {θ j = (v jf, d j, c j)}J
j = 1 (historical data) 

1: 
1

1 J

jj

n
t

J c=


    

2: 0k   

Ensure: 

3: while | / |k T t   do 

4:    ˆ ˆ ˆ(( +1) ) ( )+ ( ( ))k t k t t k t −    z zz z D V z  

5:    (

)T Τ T T

ˆ ˆ ˆˆ(( +1) ) ( )+ ( ( )) ( )

ˆ ˆ ˆ                              + ( ) (z( )) ( ( ))

k t k t t k t k t

k t k t t k t

 −     

  +  

z z

z z z z z

P P D V z P

P G D D Σ z D

 

6:    ˆ(( +1) ) (( +1) ) (( +1) )k t k t k t   −  −r m Hz  

7:    Tˆ(( +1) ) (( +1) ) + (( +1) )k t t k t k t    − R HP H Ω  

8:    T 1ˆ(( +1) ) (( +1) ) (( +1) )k t k t k t−   − K P H R  

9:    ˆ ˆ(( +1) ) (( +1) )+ (( +1) ) (( +1) )k t k t k t k t   −  z z K r  

10:    ( )ˆ ˆ(( +1) ) (( +1) ) (( +1) )k t k t k t  −   −P I K H P  

11:    +1k k  

12: end while 

Table 3-3 Algorithm for Kalman-Bucy filter 

 

 

(a)                                                                           (b) 

Figure 3-11 Simulated sample paths; (a) position trajectories x(·), (b) spacings s(·). 

To see the impact of data availability, we consider five cases of vehicle penetration rate: 5%, 

10%, 20%, 30% and 50%. There is clear improvement in the estimate from low penetration rate 

(5%) to higher penetration rates (30%) as shown in Figure 3-12. 
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(a)                                                                                       (b) 

 

(c)                                                                                     (d) 

 

(e) 

Figure 3-12 Estimated spacings with different penetration rates; (a) 5%, (b) 10%, (c) 20%, (d) 

30%, and (e) 50%. 

Table 3-4 illustrates the estimation performance for 200 vehicles in terms of Root Mean Square 

Error (RMSE) in spacing and Mean Absolute Percentage Error (MAPE) in spacing. The estimation 

performance is improved significantly when the penetration rate is higher than 20%. 
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Penetration rate 5% 10% 20% 30% 50% 

RMSE (m) 11.5 11.4 11.4 7.3 6.2 

MAPE (%) 17.6 17.5 17.1 14.4 12.2 

Table 3-4 Estimation performance of spacings 

Table 3-5 lists the RMSE and MAPE for the different penetration rates. It can be seen that 

increasing the penetration rate from 5% to 50% results in clear improvement of the estimation 

accuracy. 

Figure 3-13 and Figure 3-14 depict the maximum queue sizes, along with 95% confidence 

intervals. Queue sizes are not direct state variables but computed based on the estimated 

spacing (mean and covariance) and corresponding speed. 

Penetration rate 5% 10% 20% 30% 50% 

RMSE (veh.) 1.15 0.91 0.82 0.71 0.41 

MAPE (%) 2.54 2.05 1.56 1.15 0.79 

Table 3-5 Queue size estimation performance 

 

 

Figure 3-13 Maximum queue length by cycle. 
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(a)                                                                                     (b) 

 

(c)                                                                                   (d) 

 

(e) 

Figure 3-14 Maximum queue length along with 95% confidence intervals; (a) 5%, (b) 10%, (c) 

20%, (d) 30%, and (e) 50%. 
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4 Position weighted backpressure intersection control  

4.1 Notation 

Consider an urban traffic network represented by the directed graph 𝒢 = (𝒩, 𝒜), where 𝒩 is 

a set of network nodes, representing intersections, and 𝒜 ⊂ 𝒩 × 𝒩 is a set of network arcs, 

representing road segments. Each element of 𝒜 is in one-to-one correspondence with an 

ordered pair of elements in 𝒩. For each node, 𝑛 ∈ 𝒩, ∏𝑛 and ∑𝑛  denote, respectively, the set 

of (predecessor) arcs terminating in 𝑛 and the set of (successor) arcs emanating from 𝑛. We 

also use ∏(𝑎) to denote the set of predecessor arcs to arc 𝑎 ∈ 𝒜. That is, if 𝑛 is the ingress 

node of arc 𝑎, then ∏(𝑎) = ∏𝑛 . Similarly, ∑(𝑎) is the set of successor arcs to arc 𝑎. 

Fictitious source arcs are appended to the network to represent exogenous network arrivals. A 

new junction with indegree zero and outdegree one is created for each exogenous inflow and 

the new source arc connects this new node to the network boundary node; see Figure 4-1. 

When exogenous inflows occur at the interior of the network (i.e., at a junction with non-zero 

in-degree) representing, for example, a parking ramp/lot, the associated arc can be broken into 

two arcs with a new node placed at the position of the merge; see Figure 4-2. Source arcs will 

be assumed to have infinite jam densities (i.e., they serve as fictitious reservoirs), but the flow 

rates in and out of these arcs are assumed to be finite (i.e., finite capacities). They shall also be 

assumed to have zero physical length. Therefore, the traffic states associated with fictitious 

source arcs are point queues concentrated at the source node. We shall denote the set of 

(fictitious) source arcs by 𝒜src ⊂ 𝒜. 

 

Figure 4-1 Fictitious boundary source arcs 
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Figure 4-2 Fictitious interior source arcs 

4.2 Dynamics 

We denote the length of each arc 𝑎 ∈ 𝒜 by 𝑙𝑎. With slight notation abuse, the upstream-most 

position (the entrance position) for each arc 𝑎 in the network is 𝑥 = 0, while the downstream-

most position (the arc exit position) is 𝑥 = 𝑙𝑎 (that these coordinates pertain to arc 𝑎 only 

should be understood implicitly). We consider a multi-commodity framework, where 𝜌𝑎
𝑏(𝑥, 𝑡) 

denotes the traffic density at position 𝑥 along arc 𝑎 that is destined to outbound arc 𝑏 ∈ ∑(𝑎) 

at time instant 𝑡. Similarly, 𝑞𝑎
𝑏(𝑥, 𝑡)  denotes the flow rate at 𝑥 along 𝑎 that is destined to 𝑏 at 

time 𝑡. We have the following conservation equation: for each 𝑎 in 𝒜 and 𝑏 ∈ ∑(𝑎) 

∂𝜌𝑎
𝑏(𝑥, 𝑡)

∂t
=

∂𝑞𝑎
𝑏(𝑥, 𝑡)

∂x
   𝑥 ∈ [0, 𝑙𝑎], 𝑡 ≥ 0. 

Let 𝑝𝑎,𝑖𝑛(𝑡) and 𝑝𝑎,𝑜𝑢𝑡(𝑡) denote the upstream and downstream control state at boundaries of 

arc 𝑎. The boundary flows are written as 𝑞𝑎
𝑏(0−, 𝑡) = 𝑞𝑎,𝑖𝑛

𝑏 (𝑝𝑎,𝑖𝑛(𝑡)), and 𝑞𝑎
𝑏(𝑙𝑎+, 𝑡) =

𝑞𝑎,𝑜𝑢𝑡
𝑏 (𝑝𝑎,𝑜𝑢𝑡(𝑡)), where 𝑞𝑎,𝑖𝑛

𝑏  and 𝑞𝑎,𝑜𝑢𝑡
𝑏  are boundary flux functions, which depend on the 

(boundary) control variables and, implicitly, on the node dynamics (for instance, 𝑞𝑎,𝑖𝑛
𝑏  and 𝑞𝑎,𝑜𝑢𝑡

𝑏  

cannot exceed local supplies and demands at the arc boundaries). We omit dependence on 

system state to minimize clutter in our notation. 

We make no assumptions about the relationship between flux and density. The proposed 

approach is equally valid in first and second order contexts. The only assumptions we make are 

(i) flow conservation, (ii) probabilistic upper bounds on flux and density, and (iii) that arc 

parameters do not change along the length of the arc. The last assumption is easy to honor in a 

general network by splitting arcs with varying parameters into more than one arc. 

4.3 Junction Control 

For each node 𝑛 ∈ 𝒩, let ℳ𝑛 denote the set of allowed movements between inbound and 

outbound road segments. The set ℳ𝑛 consists of ordered pairs (𝑎, 𝑏) such that 𝑎 ∈ ∏𝑛 and 𝑏 ∈
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∑𝑛, i.e., ℳ𝑛 ⊆ ∏𝑛 × ∑𝑛. The set of all network movements is denoted by ℳ ≡ ℳ1 ⊔⋅∙∙⊔

ℳ|𝒩|. A signal phase consists of junction movements that do not conflict with one another. We 

denote by 𝒫𝑛 2ℳ𝑛 the set of allowable phases and by 𝒫 ⊆⊗𝑛∈𝒩 𝒫𝑛 the set of allowable 

network phasing schemes. Essentially, an allowable phase is one that does not allow crossing 

conflicts and only allows merging conflicts between a protected movement and a permitted 

movement. Example allowable phases are depicted in Figure 4-3. We denote by 𝑞𝑎,𝑏(𝑝𝑎,𝑖𝑛(𝑡)), 

or equivalently 𝑞𝑎,𝑏(𝑝𝑎,𝑜𝑢𝑡(𝑡)) the rate of flow that departs arc 𝑎 ∈ ∏(𝑏) into arc 𝑏 at time 𝑡. 

These are related to the commodity flows at the arc boundaries as follows: 

𝑞𝑎,𝑖𝑛
𝑏 (𝑝𝑎,𝑖𝑛(𝑡)) = 𝜋𝑎,𝑏(𝑡) ∑ 𝑞𝑐,𝑎 (𝑝𝑎,𝑖𝑛(𝑡))

𝑐∈∏(𝑎):(𝑐,𝑎)∈ℳ

 

and 

𝑞𝑎,𝑜𝑢𝑡
𝑏 (𝑝𝑎,𝑜𝑢𝑡(𝑡)) = 𝑞𝑎,𝑏 (𝑝𝑎,𝑜𝑢𝑡(𝑡)), 

where 𝜋𝑎,𝑏(𝑡) is the percentage of flow into 𝑎 at time 𝑡 that is destined to adjacent arc 𝑏 ∈

∑(𝑎). 

Under any network-wide phasing scheme, 𝑝 ∈ 𝒫, the traffic network can “support” arrival 

processes with certain rates. Beyond these arrival rates, queues will grow indefinitely. For each 

𝑝 ∈ 𝒫, we say that the network can support an arrival rate vector 𝛌(p) = [𝜆𝑎(𝑝) ∙∙∙ 𝜆|𝐴|(𝑝)]
T

 if 

lim
𝑇→∞

∑
1

𝑇
∫ (𝜆𝑎(𝑝) + 𝑞𝑎,𝑖𝑛(𝑝) − 𝑞𝑎,𝑜𝑢𝑡(𝑝))

𝑇

0𝑎∈𝐴

d𝑡 ≤ 0, 

where with slight abuse of notation, 𝑞𝑎,𝑖𝑛(𝑝) and 𝑞𝑎,𝑜𝑢𝑡(𝑝) are the inflow and outflow rates 

obtained when the network phasing scheme 𝑝 is active. This is interpreted as follows: the 

phasing scheme 𝑝 is such that the total arc outflow exceeds the total arc inflow in the long run. 

 

Figure 4-3 Example phases for a four-leg isolated intersection. 

In accord with (7), each 𝑝 ∈ 𝒫 defines a set of admissible arrival rates; denote these (convex) 

polytopes by Ω(𝑝). Taking the union of these sets, ⋃𝑝∈𝒫Ω(𝑝), we get the vectors of all possible 

arrival rates that the network can support under all 𝑝 ∈ 𝒫. This is formally defined next. 



 

 Position weighted backpressure intersection control  38 

Definition 1 (Maximal throughput region). The maximal throughput region (a.k.a., capacity 

region) of the network, denoted by Λ, is the convex hull of all sets of admissible flows. That is,  

𝚲 ≡ Conv ( ⋃
𝑝∈𝒫

Ω(𝑝)). 

Arrival rates that lie in Λ but not in ⋃𝑝∈𝒫Ω(𝑝)are interpreted as arrival rates that can be 

supported by switching between phasing schemes that lie in the latter (i.e., time-sharing). A 

control policy that can support all possible arrival rates in Λ is referred to as a throughput-

maximal control policy. We denote a control policy by a vector of network control states: at 

time 𝑡 the network control state is denoted by 𝑝(𝑡) ≡ [∙∙∙  𝑝𝑎,𝑖𝑛(𝑡)  𝑝𝑎,𝑜𝑢𝑡(𝑡)  ∙∙∙]
T

, a policy is an 

entire curve 𝑝(∙). 

4.4 Position-weighted back-pressure (PWBP) 

For any intersection 𝑛 ∈ 𝒩, we assume that controllers are capable of assessing the (average) 

movement fluxes associated with any possible phase 𝑝 ∈ 𝒫𝑛. That is, for any (𝑎, 𝑏) ∈ ℳ𝑛, 

𝔼(𝑞𝑎,𝑏(𝑝)|𝝆(𝑡)) ≡ 𝔼𝝆(𝑡)𝑞𝑎,𝑏(𝑝) is known or can be estimated by the controller (locally). Drops 

in flux as a result of start-up lost times are captured by utilizing demand functions with 

diminishing flux at higher densities (see (101) and references therein). The stochasticity in the 

flows captures supply uncertainty. It can be modeled using parametric uncertainty (25, 58). 

For each 𝑛 ∈ 𝒩 and each (𝑎, 𝑏) ∈ ℳ𝑛, we define the weight variable 

𝓌𝑎,𝑏(𝑡) = 𝑐𝑎,𝑏 ∫ |
𝑥

𝑙𝑎
| 𝜌𝑎

𝑏(𝑥, 𝑡)d𝑥 − ∫ |
𝑙𝑏 − 𝑥

𝑙𝑏
| ∑ 𝑐𝑏,𝑐𝜋𝑏,𝑐(𝑡)𝜌𝑏

𝑐(𝑥, 𝑡)d𝑥

𝑐∈∑(𝑏):
(𝑏,𝑐)∈ℳ

𝑙𝑏

0

𝑙𝑎

0

 

which depends on the (commodity) density curves along arcs 𝑎 and 𝑏. To interpret this, first 

note that 

∫ 𝜌𝑎
𝑏(𝑥, 𝑡)d𝑥

𝑙𝑎

0

 

is just the total traffic volume (queue size) along arc 𝑎 that is destined to arc 𝑏. Then the first 

integral inside the square brackets in (9) can be interpreted as a weighted queue size, where 

traffic densities at the downstream end of arc 𝑎 (at 𝑥 = 𝑙𝑎) have the (maximal) weight of one, 

while traffic densities at the upstream end of 𝑎 (at 𝑥 = 0) have a weight of zero. In between, 

the weights increase linearly with 𝑥. Similarly, the second integral inside the square brackets in 

(9) can also be interpreted as a weighted queue size, but with the weights decreasing linearly 

with 𝑥. Hence, the weight associated with movement (𝑎, 𝑏) decreases as the traffic densities at 

upstream end (ingress) of arc 𝑏 increase and vice versa, and it increases when the traffic 

densities are concentrated at the downstream end of arc 𝑎 and vice versa. The movement 
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constants 𝑐𝑎,𝑏 in (9) allow for assigning higher weights to certain movements. For example, in 

our experiments, we use this to assign higher weights to left-turn movements: if (𝑎, 𝑏) is a left-

turning movement, 𝑐𝑎,𝑏 ≡ (
#thru

#left
)2, where #thru is the number of through lanes and #left is the 

number of left lanes. The phase that is active at node 𝑛 at time 𝑡 under PWBP control, denoted 

𝑝PWBP(𝑡), is given by 

𝑝PWBP(𝑡) ≡ arg max
𝑝∈𝒫𝑛

∑ 𝓌𝑎,𝑏(𝑡)

(𝑎,𝑏)∈ℳ𝑛

𝔼𝝆(𝑡)𝑞𝑎,𝑏(𝑝). 

Since the number of possible phases at any intersection tend to be small (typically four-eight), 

(11) can be easily solved by direct enumeration. This allows for real-time distributed 

implementation of the proposed approach. It can also be demonstrated that PWBP control is 

network stabilizing.  

In the proposed set-up, the density curves 𝜌𝑎
𝑏(∙, 𝑡) and the splits 𝜋𝑎,𝑏(𝑡) are random quantities 

that are to be estimated or measured. In a fully automated system, these quantities may 

degenerate. That is, it is easy to imagine that they can be measured with high accuracy and 

become deterministic quantities. In present day settings, these quantities need to be 

estimated. The setting envisaged in this paper is one with mixed automated/connected and 

traditional vehicles. Connected vehicles announce their turning desires upon entering arc 𝑎 and 

may serve as probes to allow the controller to estimate traffic conditions along the arc and the 

split variables. In such settings, the proposed control techniques need to be coupled with traffic 

state estimation tools; we refer to (25) and references therein for examples of traffic state 

estimation in urban traffic settings. 
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5 Experiments 

5.1 Experiments for Lagrangian traffic estimation model 

5.1.1 Microscopic traffic simulation experiments 

Data preparation 

The test area we selected is Plymouth Road, which is an urban arterial road in the city of Ann 

Arbor, Michigan. In order to obtain ‘ground truth data’, we utilize a calibrated microscopic 

traffic simulation model of the test road. Figure 5-1 provides an illustration of the test road 

(1km in length) with two intersections (Huron Pkwy - Plymouth Rd and Nixon Rd - Plymouth 

Rd). We derive the trajectory data (positions and speeds) of through-going vehicles traveling 

westbound along Plymouth Road over a time period of 600 seconds (see Figure 5-2). The 

parameters vf(ω), d(ω), and c(ω) are independent Beta random variables with supports [vmin = 

[48, 58] km/hr, [dmin, dmax] = [5.8, 7.3] meters, and [cmin, cmax] = [1795, 3767] veh/hr estimated 

from the simulated ground truth trajectory data. We assume the first vehicle trajectory in the 

system and the initial condition (spacing of vehicles at time t = 0) are known as well. 

 

Figure 5-1 The test road in Ann Arbor, Michigan. 
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Figure 5-2 Ground truth from calibrated microscopic simulation model: position trajectories 

To see the impact of data availability on the uncertainty of traffic state estimation, we consider 

five cases of penetration rate: 5%, 10%, 20%, and 30%and 50%. Figure 5-3 – Figure 5-5 illustrate 

the position trajectories available (the measurements) for the different penetration rates used 

in our experiments. 

 

(a)                                                                                 (b) 

Figure 5-3 Measured trajectories (bold) against the ground truth trajectories for penetration 

rates (a) 5% and (b) 10%. 
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(a)                                                                                (b) 

Figure 5-4 Measured trajectories (bold) against the ground truth trajectories for penetration 

rates (a) 20% and (b) 30%. 

 

Figure 5-5 Measured trajectories (bold) against the ground truth trajectories for penetration 

rate 50%. 

Estimation results 

With estimated parameters of the model and given the first vehicle trajectory information 

(boundary condition) and the initial condition, the traffic state dynamics (spacing and positions) 

can be fully characterized. We apply the Kalman-Bucy filter given in Table 3-3. Figure 5-6 

depicts the ground truth dynamics in terms of traffic densities and speed fields. Figure 5-7 and 

Figure 5-8 depict the estimated density and speed dynamics. There is clear improvement of 

estimation accuracy when the penetration rate increases from 5% to 50%. The congestion 

(shockwave) and queue dynamics can be well captured when the penetration rate increases to 

20%. As a summary of the estimation accuracy, Figure 5-9 plots the RMSEs in speed for the 

varying penetration rates. 
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(a)                                                                                    (b) 

Figure 5-6 Ground truth from calibrated microscopic simulation model: (a) density dynamics 

(in veh/km), (b) speed dynamics (in km/hr) 

 

(a)                                                                                    (b) 

 

(c)                                                                                  (d) 
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(e) 

Figure 5-7 Estimated density fields (in veh/km) with different penetration rates: (a) 5%, (b) 

10%, (c) 20%, (d) 30% and (e) 50% 

 

(a)                                                                                   (b) 

 

(c)                                                                                 (d) 
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(e) 

Figure 5-8 Estimated speed fields (in km/hr) with different penetration rates: (a) 5%, (b) 10%, 

(c) 20%, (d) 30% and (e) 50% 

 

Figure 5-9 RMSE in speed estimates vs. probe penetration rate 

5.1.2 NGSIM data experiments 

Data preparation 

In order to test the performance of the proposed model and estimation approach with field 

data, we use the NGSIM data collected on eastbound I-80 in the San Francisco Bay area in 

Emeryville, CA. The study area is approximately 500 meters in length and we selected the 

vehicle trajectory data on the farthest left lane with time period of 15min between 4:00PM and 

4:15PM on April 13, 2005 (see Figure 5-10). Figure 5-11 - Figure 5-14 depict the sampled vehicle 

trajectory data for the four penetration rates. 
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Figure 5-10 Ground truth vehicle trajectories along I-80 

 
Figure 5-11 Sampled vehicle trajectories data for 5% penetration rate 

 

Figure 5-12 Sampled vehicle trajectories data for 10% penetration rate 
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Figure 5-13 Sampled vehicle trajectories data for 20% penetration rate 

 
Figure 5-14 Sampled vehicle trajectories data for 30% penetration rate 

The parameters vf(ω), d(ω), and c(ω) are independent Beta distributed random variables with 

supports [vf
min, vf

max] = [95, 105] km/hr, [dmin, dmax] = [5.9, 7.7] meters, and [cmin, cmax] = [2340, 

3672] veh/hr. These were fitted using ground truth trajectory data. 

Estimation results 

We applied the proposed data assimilation approach to the second type of measurements, 

where we assume that spacing measurements are available, e.g., connected vehicles with their 

surrounding information available (both their leaders and followers) and spacings between the 

current vehicle and its immediate leader and follower can be measured (5 measurements). 

Figure 5-15 depicts the ground truth density and speed fields. To see the performance of the 

new measurement equation and the impact of data availability on the uncertainty of traffic 

state estimation, we consider four penetration rates: 5%, 10%, 20% and 30%. 
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(a)                                                                                 (b) 

Figure 5-15 Ground truth from NGSIM data: (a) densities (veh/km), (b) speeds (km/hr) 

Figure 5-16 depicts the estimated density and speed dynamics. When the penetration rate 

increases from 5% to 10%, there is a clear improvement of density estimation accuracy. The 

congestion shockwave can be well captured when the penetration rate increases to 10%. Figure 

5-17 depicts the estimated speed dynamics. When the penetration rate increases to 20%, the 

proposed approach is able to provide good estimation results in terms of congestion dynamics. 

 

(a) 5%                                                                          (b) 10% 

 
(c) 20%                                                                    (d) 30% 

Figure 5-16 Estimated densities (veh/km) at different penetration rates 
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(a) 5%                                                                          (b) 10% 

 
(c) 20%                                                                    (d) 30% 

Figure 5-17 Estimated speeds (km/hr) at different penetration rates 

As a summary of the estimation accuracy, Figure 5-18 plots the RMSEs in speed for the varying 

penetration rates. The magnitudes of the RMSEs are comparable to most of the results in the 

literature, with the notable difference that our comparisons involve estimates of microscopic 

data. 

 

Figure 5-18 RMSE in speed estimates vs. probe penetration rate 
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5.2 Experiments for PWBP 

5.2.1 Network description 

We utilize a microscopic traffic simulation network of a part of the city of Abu Dhabi in the 

United Arab Emirates (UAE) consisting of eleven signalized intersections but also containing 

unsignalized intermediate junctions. The network layout is shown in Figure 5-19. We compare 

PWBP control with three other control policies: fixed time, standard BP control, and CABP 

control. The fixed timing plans are optimized and include optimal offsets (i.e., signal 

coordination). BP, CABP, and PWBP are all implemented using a software interface. To simplify 

the experiments, we utilize a uniform demand at the boundaries, which we vary to gauge the 

capacity region of the network. Using a uniform (average) demand level allows us to use a 

single number (namely the demand) as a way to gauge the capacity region. 

 

Figure 5-19 Simulation network in Abu Dhabi. 

5.2.2 Average network delay and network capacity region 

Figure 5-20 shows the total network delay under different demand scenarios (ranging from 500 

to 1800 veh/h on average) for BP, CABP, and PWBP using two types of phasing schemes: one 

with four phases (“4-phase” scheme) and a scheme with eight phases (“8-phase scheme”). The 

4-phase scheme includes phases 1-4 in Figure 4-3, while the 8-phase scheme is all eight phases 

in Figure 4-3. We observe that 40 s/veh is a threshold delay, beyond which the delay increases 

dramatically. We can hence treat 40 s/veh as indicative of reaching the boundary of the 

capacity region. From Figure 5-20, with the 8-phase scheme, we see that delays begin to 

increase rapidly at higher average demand levels for the PWBP: 1620 veh/h for the 8-phase 

scheme vs. 1580 veh/h for the 4-phase scheme. However, this is not the case for BP and CABP 

control, since they do not distinguish left-turning and through queues, which results in blocking 
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at the points where roads widen (left-turn lane addition). This indicates that BP and CABP have 

a wider capacity region using a 4-phase scheme compared to the 8-phase scheme. All 

subsequent experiments use an 8-phase scheme with PWBP and 4-phase schemes with BP and 

CABP. The demands at which delays begin to increase quickly for fixed signal timing, BP, CABP, 

and PWBP are 1225, 1555, 1570, and 1620 veh/h, respectively. Figure 5-21 shows a comparison 

of network delays for the four control policies under varying demands. 

   

(a)                                                                                     (b) 

   

(c)                                                                                     (d)  

Figure 5-20 Delay patterns at varying demand levels for different control policies. 

 

Figure 5-21 Network delays associated with different control policies. 
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5.2.3 Congestion propagation 

In the following experiments, we set the demand levels to the deterioration bounds of the 

control policies and compare how congestion levels propagate over time. Since the 

deterioration bounds for BP and CABP are close, we just use CABP’s bound (1570 veh/h); we, 

hence, compare three demand scenarios. Figure 5-22 and Figure 5-23 show how the speeds of 

all vehicles within the network are distributed under demand levels 1225, 1570 and 1620 

veh/h. The horizontal axes in these figures are time and the vertical axes are percentage of 

vehicles traveling at or below the color-coded speeds. Under the different demand levels, the 

network eventually becomes grid-locked (at different levels for the different control policies). 

Specifically, it takes about four hours until total network gridlock under a fixed timing plan 

when the demand reaches 1225 veh/h, under BP and CABP it takes approximately six hours (at 

1570 veh/h) until gridlock, and for PWBP, it takes approximately seven hours. This indicates 

that PWBP is more resilient than the other policies. Figure 5-24 shows how the total number of 

vehicles (stuck) in the network evolves with time. 

 

(a) FT@1225vph                                                         (b) BP@1225vph 

  

(c) CABP@1225vph                                                      (d) PWBP@1225vph 
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(e) FT@1570vph                                                         (f) BP@1570vph 

Figure 5-22 Network speed evolution, (a) fixed timing under a demand level of 1225 veh/h, 

(b) BP under a demand level of 1225 veh/h, (c) CABP under a demand level of 1225 veh/h, 

and (d) PWBP under a demand level of 1225 veh/h, (e) fixed timing under a demand level of 

1570 veh/h, (f) BP under a demand level of 1570 veh/h. 

  

(a) CABP@1570vph                                                    (b) PWBP@1570vph 

  

(c) FT@1620vph                                                         (d) BP@1620vph 
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(e) CABP@1620vph                                                     (f) PWBP@1620vph 

Figure 5-23 Network speed evolution, (a) CABP under a demand level of 1570 veh/h, (b) 

PWBP under a demand level of 1570 veh/h, (c) fixed timing under a demand level of 1620 

veh/h, and (d) BP under a demand level of 1620 veh/h, (e) CABP under a demand level of 

1620 veh/h, (f) PWBP under a demand level of 1620 veh/h. 

 

(a) 
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(b) 

 

(c) 

Figure 5-24 Evolution of total numbers vehicles in the network under different control 

policies and demand levels of (a) 1225 veh/h, (b) 1570 veh/h, and (c) 1620 veh/h. 

5.2.4 Recoverability from congestion 

Figure 5-25 shows how different control policies recover from congestion. The total simulation 

time is eight hours, the time interval from t = 120 min to t = 240 min is set as a congested 

period, during which demand levels are set to the deterioration bounds. We set a demand of 

1000 veh/h for the remainder of the eight-hour simulation time. Figure 5-25a, b and c only 

differ in the demand levels during the congested period. The congested period demand levels 

are 1225, 1570 and 1620 veh/h in Figure 5-25a, b and c, respectively. According to Figure 5-25, 

for all tested scenarios, PWBP outperforms the other three control policies in terms of both 

delay and recovery time. Even when the peak demand reaches 1620 veh/h, PWBP only needs 

30 min to recover from the congestion, while fixed timing needs about 90 min to recover with a 

peak demand of 1225 veh/h. Note that when the peak demand reaches 1570 and 1620 veh/h, 

the delay levels under fixed timing becomes too high and hence cannot be shown in Figure 

5-25b and c. We also see that using fixed timing, the network does not eventually recover from 

congestion. 
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(a) demand@1225vph 

 

(b) demand@1570vph 

 
(c) demand@1620vph 

Figure 5-25 Average network delay under varying peak period demands. 
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5.2.5 Response to an incident 

We investigate the performance of PWBP in the presence of an incident located at the yellow 

spot in Figure 5-19. The incident is located half-way between intersections A and B, along a 3-

lanes arc. We test scenarios where one lane and two lanes are blocked for a duration of one 

and two hours, and under different demand levels. Figure 5-26 shows the results for one-lane 

blocked cases when demand is 1500 veh/h. Fixed timing is not included here since 1500 veh/h 

is beyond its capacity region and the delays will only increase without bound. Dotted lines 

represent the non-incident cases, while dashed and solid lines represent the incident cases with 

one and two hour durations, respectively. The incident starts at the 60th min in both cases. 

When the incident duration is one hour, we see that the network recovers within 30 minutes 

after the incident is cleared under BP, CABP and PWBP. However, when the incident duration is 

two hours, PWBP only needs one hour to completely recover, while congestion in the network 

persists for significantly longer under BP and CABP: the effects of the incident are still felt in the 

network three hours after the incident is cleared (compared to the no-incident scenarios). 

 

Figure 5-26 Delays associated with different policies with one lane blocked by the incident 

under a demand level of 1500 veh/h. 

Figure 5-27 shows the two-lanes-blocked cases when demand is 1200 veh/h. The network fails 

to recover under fixed timing, BP and CABP control when the incident blocks two of the three 

lanes. The delays increase sharply and the whole network becomes gridlocked. In contrast, 

using PWBP control the incident hardly has any impact at all on network delay. 
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Figure 5-27 Delays associated with different policies with two lanes blocked by the incident 

under a demand level of 1200 veh/h. 

The reason for the performance difference between BP, CABP and PWBP originates from how 

the model deals with scenarios in Figure 1-1b and Figure 1-1c. With an incident located half-

way between intersections A to B, the incident results in congested conditions (queueing) 

between the incident location and intersection A and low volume traffic between incident 

location and intersection B. When the queue spills back to intersection A (similar to Figure 

1-1b), PWBP will forbid the movements from A to B, while BP and CABP fail to capture the 

spillback dynamics. In addition, PWBP does not allocate green time at intersection B to the 

movement from A when there are actually no vehicle near the stop line (similar to Figure 1-1c), 

while BP and CABP may still allocate green time to this movement. 
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6 Conclusion and outlook 

This research builds a calibrated simulation network based on field data from Abu Dhabi, and 

uses machine learning to develop a SCOOT emulator.  The trained SCOOT emulator is compared 

with the actual SCOOT system and results show high accuracy of the emulator. 

 

We study two methodologies for traffic state estimation. One uses random fields to learn traffic 

flow dynamics, and the other one uses stochastic Lagrangian dynamics to estimate traffic 

states. The former combines mesoscopic traffic modeling with the statistical power of 

probabilistic graphical models to learn the traffic patterns from historical data, and the 

modeling approach includes both look-ahead dynamics along with vehicle interaction dynamics. 

A conditional random fields (CRF) approach using a factor graph representation of the dynamics 

is then proposed for purposes of statistical learning when limited data is available. Coverage of 

the probe vehicle information can be expected to be highly random as well as sparse in the 

real-world. The experiments demonstrate that the distribution of probes in a sample can 

severely impact the estimation results, and hence it is not sufficient to specify adequate 

penetration levels with a single value. The latter adopts the Newell-Franklin speed-spacing 

relation and introduced stochasticity via parametric uncertainties. An ensemble averaged 

process is derived, which is consistent with traditional first-order Godunov schemes using a 

mean speed-spacing relation (as numerical flux), not a traditional equilibrium relation. The 

mean process is shown to converge to a conservation law in Lagrangian coordinates. We then 

derive the covariance dynamics of the model by applying a Gaussian approximation. We 

provide two experiments to demonstrate the estimation capability of the proposed approach 

for more realistic settings. In the first experiment we use vehicle trajectory data from a 

calibrated microscopic traffic simulation model of an arterial road in Ann Arbor City in Michigan. 

The estimation results show that traffic states, in terms of speed and density dynamics, can be 

well captured when the penetration rate increase to 20%. In the second experiment, we use 

NGSIM trajectory data along I-80 in the San Francisco Bay area in Emeryville, CA. The traffic 

state in terms of density dynamics can be well estimated with 10% penetration rate. The 

investigation of the speed estimation error in terms of RMSEs for different penetration rates 

illustrate that there is strong improvement as the penetration rates increase from 5% to 15%. 

 

For traffic control, we propose a backpressure-based technique that is based on macroscopic 

traffic flow, which we refer to as position-weighted backpressure (PWBP). PWBP considers the 
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spatial distribution of vehicles when calculating the backpressure weights. The PWBP control 

policy is tested using a microscopic traffic simulation model of an eleven-intersection network 

in Abu Dhabi. Comparisons against coordinated and optimized fixed signal timing, standard BP, 

and a capacity-aware variant of BP (CABP) were carried out. The results indicate that PWBP can 

accommodate higher demand levels than the other three control policies and outperforms 

them in terms of total network delay, congestion propagation speed, recoverability from heavy 

congestion, and response to an incident. 

 

One of the drawbacks of the proposed random field estimation approach is: as the traffic state 

predicted at each time-step becomes the input vector for the following estimation model, 

errors in the state estimates propagate with time. This drawback can be addressed using spatio-

temporal graphical representations, but the factor graphs in such a setting along with the 

associated learning models can be very challenging from a computational stand-point. The 

model can also be extended to multi-lane roads, and the CRF models can be improved by 

adopting higher order Markov models to capture the influence of vehicles further downstream 

(ahead of the leader), which could yield higher estimation accuracy with lower probe 

penetration rates.  The computational issues are not suffered by the Lagrangian state 

estimation approach, which develops a macroscopic model based on car-following theory and a 

Gaussian approximation for quick estimation using standard Kalman filters. 

 

As to the PWBP control policy, this research has focused on prioritization of movements at 

network intersections. As a possible future research direction, this can be extended to include 

real-time route guidance.  
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